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Double-Plane Steps in Rectangular
Waveguides and their Application for

Transformers, Irises, and Filters

HARTMUT PATZELT AND FRITZ ARNDT

Abstract —Double-plaue steps in rectangular wavegnides are investi-

gated with the method of field expansion into eigenmodes. Thk method

takes into acconnt the influence of evanescent fields and power transmis-

sion due to bigher order modes. The scattering coefficients of a P- (Ku- )

to X-band waveguide transition as well as of resonant irises with finite

thickness are calculated and compared with measured results. An optimum

short double-plane three-seetion transformer is designed which shows

equaf-ripple behavior in passband. The performance of a reactance-coupled

four resonator haff-wave filter is improved by additional optimized double-

plane steps.

I. INTRODUCTION

D OUBLE-PLANE steps in rectangular waveguides play

a significant role for the design of waveguide trans-

formers [1]-[5], iris coupling structures [1], [2], [6], and

waveguide filters [2]. For transformers, additional steps in

the H-plane can yield shorter section lengths and lower

reflection coefficients [2] in comparison with the mere

E-plane type; rectangular irises of finite width and thick-

ness can be used for tunable direct-coupled resonator

filters [2]; the performance of reactance coupled half-wave

waveguide filters can be improved by additional double-

plane steps [2]. But there still exists a paucity of suitable

theoretical research on such double-plane step circuits,

including excitation of higher order modes which may

influence considerably design data even below their cutoff

frequency.

The investigations on waveguide transformers in [1]

through [5] are based on the assumption that only the TE,0

mode is propagating along the line. Therefore, no direct

design of correct transformer section lengths is possible.

For E-plane waveguide transformers there are empirical

formulas for length correction; for double-plane trans-

formers the designer is left to individual measurements [2].

Rectangular irises are usually calculated by equivalent

circuit methods [2], [6]. Especially for thick irises, however,

this first-order theory leads to wrong results if no empirical

correction is included. Reactance-coupled half-wave

(pseudo-high-pass) filters work well up to step discontinu-

ity VSWRS in the neighborhood of 2 [2]. For other values

there is a noticeable deviation from an equal-ripple re-

sponse, which can be compensated by additional double-
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plane steps. The design values of [2], however, based on the

quarter-wave transformer prototype, are not optimum, since

higher order modes influence the effective resonator lengths

and the step dimensions.

The theory given in this paper, which includes higher

order mode excitation also below cutoff frequency, avoids

these disadvantages and yields correct design data. It is

based on field expansion into orthogonal eigenmodes [7],

by which .&plane steps [8], [10], and infinitely thin induc-

tive or capacitive irises [9] have already been investigated.

In contrast to [8] through [10], however, double-plane step

circuits require all field components to be considered.

Calculation of the scattering coefficients of dominant

mode and next higher order modes for a transition of P-

(Kw ) to X-band waveguide as well as for resonant irises

with finite thickness demonstrates the influence of higher

order mode propagation. The Fletcher–Powell optimiza-

tion procedure [11 ] together with the higher order mode

design theory leads directly to optimum double-plane

stepped waveguide transformers and double-plane step

compensated reactance-coupled half-wave filters. Mea-

sured results verify the theory.

II. THEORY

For the double-plane step (Fig. l(a)), the field is derived

from the axial z-components of the magnetic and electric

Hertzian vector potentials IIk and II, [ 12]

E=–jupv XIl~z+v Xv XII,z

H=jucv XIIez+v Xv XII~z. (1)

The Hertzian potentials can be written as a sum of the

products of the eigenfunctions T~~~(x, y) and the propaga-

tion expressions exp( a y~~~z) due to each mode excited at

the step discontinuity between the two waveguides v = 1

and 2 (Fig. l(a))

~~) = ~ ~ a~~nT~~)n
~=on =()

“exp(– yjjn Z)+ ~ti.T~~.exp(+ y~~nz)
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Fig. 1. Double-plane step in rectangular waveguide. (a) Step dimen-
sions. (b) Forward and backward waves at the step. (c) Transformer
section of two steps.

As in [13], the eigenfunctions are so normalized that the where x, < X7, y, < y, and

power carried by a given wave is proportional to the square

of the wave-amplitude coefficients a and b

“w
y~::ma = Jk 1–

~(,j = 2“cos(kf?&c2))cos(k; :)”(y-d2))
hki

N1./~.J~

2.sin(k~). (x–c,)) .sin(k~). (y–d2))
Tj~) =

N]

2.sin(k~2). x). sin(k~). y)
~.,;) =

N,
(3)

k = ti~, and 8., ~ = Kronecker delta.

The still unknown coefficients a and b in (2) correspond

directly to normalized incident and reflected waves related

to each other by the scattering matrix which can be de-

termined by matching the fields at the step discontinuity at
z = O (Figs. l(a) and l(b))

@l)
X.v Z=o

= ~ (2)

X,Y

~ (2)
X,.v

A,
Z=(J Z=o =0
A,

~(l)

X!Y

= ~(’)

X%Y~= o Z=O.
A, A,

This leads to the matrix equation

where m = k and n = 1 for v =1; m = i and n = j for v =2) also the abbreviations V~,h, Vfi, e,

with plained; U= unit matrix)
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(see Appendix, where

‘h,,, and Ve ~ are ex-
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(6)

NI==IZ=F The scattering matrix of the step discontinuity (Fig. l(b)) is

then given by

N2=~~.
-

II

~= fl~ ; S1’ =Kyl.K (7)
k~l) = ti k:) . b s’, I 32; 1.

x, Y1 A series of steps (see Fig. l(c)) is commonly treated by

k~’)–l”w k:~) = ti (4)
transmission matrix parameters, e.g., [3]. But this is not

x2 Y’ appropriate, if, like here, higher order modes are included
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which are excited below their cutoff frequency. Since trans-

mission matrix parameters for certain frequencies then may

contain exponential functions with positive argument they

exceed for many geometrical cases the available numerical

range of the computer. The direct combination of the

involved scattering matrices is numerically stable as is

shown for two steps (Fig. 1(c)) as an example, only con-

taining exponential functions with negative arguments

“B::11[:11‘8)
where I and II denote the steps I and II, respectively, and

E=(U– S: DS~@”l

F=(U– Sj2DS~~D)-1

where U= unit matrix, and D = diagonal matrix with

D,, = ~–T,lt,

due to the transformer sections of length 1,, between the

double steps, (see Fig. l(c)). Besides the numerical stability,

a further advantage of this direct calculation in comparison

with the transmission parameter method is that no symme-

try of ports (i.e., waves) is required. A series of more than

two steps can be treated analogous to (8).

For double-plane steps with excentric waveguide axes,

the HIO(TE 10) wave incident excites all Hm.(TE~~ ) and

En,,(TM~~) waves with m = (0),1,2, 3,..., and n =

(0),1,2,3,..., (m= O or or n = O only for TE~.). If the

axes are concentric, only the waves m =1,3,5, ” . . . and

n = (0),2,4,6,. ... are excited. Because of limited comput-

ing time and storage requirements, the number of series

terms in (2), i.e., the number of modes considered, has to

be restricted to finite values M and N, respectively. The

maximum values necessary for computing the examples

described are M = 9 and N= 8, respectively, for double-

plane steps.

III. RESULTS

The first example investigated is the step discontinuity of

a P- (I@- )band waveguide (12.4– 18 GHz, xl = 15.8 mm,

-yI = 7.9 mm, see Fig. l(a)) to an X-band waveguide (8.2-

12.4 GHz, X2= 22.9 mm, yz = 10.2 mm). The magnitude of

the calculated scattering coefficients for the first wavetypes

is shown in Fig. 2. S1, together with the wavetype in round

brackets denotes the corresponding reflection coefficient,

Szl the corresponding transmission coefficient, if an H,O

wave is incident in the P-band waveguide. It can be stated

that a high amount of energy is transported by higher

order modes.

In this example, the inclusion of higher order modes up

to M = 5 and N= 4 has turned out to yield sufficient

convergence behavior (within drawing-accuracy) of the

scattering coefficients. For comparison, IS1, I~~,,) has been

measured in the frequency range of 10– 18 GHz showing

good agreement with theoretical results.

Ii,kl + measured
X-band - ,

0.4

[!!. ?l~
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H3hMf-x Hm-Ltif-P

Fig 2. Scattering coefficients as a function of normalized free-space
wavelength and frequency, respectively, of a concentric step discontinue.
ity from a P- (Ku-) band to an X-band waveguide if a If lo(TEIO ) wave
is incident, IS,, It~,0) = magnitude of reflection coefficient, Hlo-wave,

ISzl I ~,, = magnitude of transmission coefficient, H30-wave, etc.,

Hlo.cutorf. P = cutoff frequency of the Hlo-wave in the P-band wave-
guide, etc., AO= free-space wavelength, a = xl = 15.8 mm, y] = 7.9 mm;

X2 =22.9 mm,.!+= 10.2 mm, see Fig. l(a).
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Fig. 3. Magnitude of the reflection coefficient of double-plane trans-
formers between a P- and an X-band waveguide. -–- linear double
taper approximated by 24 steps. — optimum double-plane stepped
(design data see Table 1).

Double-plane (inhomogeneous) transformers come

about, for instance, when rectangular waveguides having

different heights and widths are cascaded. Also, inhomoge-

neous transformers may serve as taper section when rectan-

gular waveguides are combined with ridged, circular, or

other types of waveguide.

In [5], linearly double tapered waveguide transformers

are suggested. Fig. 3 shows the calculated and measured
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reflection coefficient of such a transformer (dashed line).

As an example of application, such as in Fig. 2, a wave-

guide transition from P-band to X-band is chosen, and the

length of the transformer section is assumed to be 1=50

mm. For calculation, the taper is subdivided into 24 steps

of equal lengths, where each step yields a scattering matrix

according to (7); the series is calculated following (8).

As can be stated, the liner taper is not optimum concern-

ing the length of the coupling section and reflection behav-

ior. Moreover, the high-pass behavior of this continuously

tapered structure cannot be taken advantage of since the

range of suitable waveguide application is limited by the

cutoff frequency of the H20(TE20 ) wave in the broader

(X-band) waveguide. Therefore, an optimum short three-

section double-plane transformer is proposed which shows

nearly Tchebycheff behavior of the reflection coefficient in

passband (Fig. 3, solid line). The design data are calcu-

lated with the Fletcher–Powell method [11 ] by minimizing

the error function

J IWJ)12
F(z) = ~

,=, l~2,(@12

with the parameter vector

Z= (X1,X2,X3,.. “>x~;Yl!Y2>y3~”””>y~;

l,,,lr2,113,...,l,n)T

(9)

j = frequency sample points, x,= height, y, = width, 1,, =
length of the transformer section i, and with the scattering

parameters according to (7) and (8). The optimum design

data are given in Table I.

In Fig. 3, for each step discontinuity, as in Fig. 2, the

number of waves M and N, in (2), is chosen to be M = 5

and N =4. The waves, however, within the waveguide

sections of length /f, (see Fig. l(c) and diagonal matrix D in

(8)) are taken into account according to increasing cutoff

frequency. Seven consecutive waves (TE,0, TE30, TE,2,

TM12, TE32, TM32, and TE50 ) have turned out to be

sufficient to yield adequate convergence behavior for the

examples in Fig. 3, since the fringing fields due to modes of

still higher order, evanesce relatively quickly with distance

because of the described technique of directly combining

the scattering matrices according to (8).

Fig. 4 shows the scattering parameters of resonant irises

with finite thickness. Also, here the considerable amount of

energy transported by higher order modes is demonstrated.
By measurement, it is shown that the calculated values

(e.g., the resonant frequency) are in close coincidence with

practice. For these examples, M and N are assumed to be

M = 7 and N = 8. Seven consecutive waves have been taken
into account within the iris waveguide section.

In [2], reactance-coupled pseudo-high-pass filters are im-

proved by two additional double-plane steps. Fig. 5 (dashed

line) shows the transmission coefficient in decibels calcu-

lated with (7) and (8) for dimensions according to [2] (see

Table I). It can be stated that in contrast to the theoretical

predicted performance in [2] no optimum response is ob-

tained. An optimization however, according to (9) leads to
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Fig. 4. Magnitude of the scattering coefficients of resonant irises with
finite thickness t. Waveguide dimensions: a = 15.8 mm, b = 7.9 mm ( P-
(K.- ) band). Iris dimensions: @ : a’= a~, b’= b/fi, z = 2 mm;
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Fig. 5. Transmission coefficient a= – 2010g IS1l I in decibels of a reac-
tance-coupled four resonator half-wave pseudo-high-pass filter with
double-step compensation. --- design data according to [2] (see Table
I). — optimized design data (see Table I).

TABLE I
DIMENSIONSOFDESIGNEDTRANSFORMERSAND FILTERS

~

O$!tinum dmble-r,lane three-section tra”a?orine, (F IQ. 3)

R,..,. ”.. .o. pl, d F,s IG. o.. ?il.. r (Fig. ,,

not WWewide 1 and 2 11’18 1,5 Pe.. lo4 Iris Z,& ,,..2,3 iris 3

optimized

according
‘/mm~) 34.85 2L.404 34,85 19. ,G2

b /mIll

3h.85 ?7. b93

*.
15.8 23.7 23.7 23.7 23.7 23.’7

[23 lr/nm o 37.057 0 19.265 0t
❑ntlmized a /.. 34,85 29.190 34.85 ?9. ?k2 34.05 17. b93

b /.. 15.8 24.5 24.5 24.5 24.5 24 .“5

l’/mm o 23.41!4 0 ~9.265

?) a . !Adth, b . height, It . lenqht or t,anefomnel’ section, 1, . length OF reo. natu,

optimum design data (see Table I) which provide nearly

equal-ripple behavior (Fig. 5, solid line). For these exam-

ples, M and N are chosen to be M = 9 and N = 8 for each
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Fig. 6, Magnitude of the reflection coefficient of an unsymmetrical
resonant iris if an H] ~ wave is incident. Waveguide dimensions: x, = 15.8
mm, y] = 7.9 mm, Iris dimensions: X2 = 11.85 mm, y] = 6 mm, thickness
= 3 mm.

step. But since the resonator lengths between them are

relatively long, only three consecutive waves have turned

out to be sufficient within these sections for the frequency

range considered.

To demonstrate the application of the method deswibed

for a double step with excentric axes, an unjymmetric(

resonant iris with finite thickness is chosen. Fig. 6 shows

the calculated and measured magnitude of the scattering

coefficient S], for an incident TE, ~ wave. M and N are

each chosen to be equal to 4 (note that- all modes are

excited). Five consecutive waves are considered within the

iris waveguide section.

Further examples for a treatment with this method are

inductive and capacitive irises with finite thickness. If only

a TE,0 wave is incident (note that this is not the case for

the pseudo-high-pass filter irises in Fig. 5), for an inductive

iris only TEH,O, for a capacitive iris only TE,. and TM,,,

waves are excited. Sufficient convergence behavior and

coincidence with measurements is obtained for M = 25

(inductive iris) and N =12 (capacitive iris) as well as five

consecutive waves within the iris (iris dimensions up to

one-half of the corresponding waveguide dimensions pro-

vided, and thickness not less than about one-tenth of the

iris dimension).

IV. CONCLUSIONS

A design theory for double-plane steps in rectangular

waveguides is suggested which takes into account higher

order mode excitation also below cutoff frequency. This

allows one to include in the design procedure the in-

fluences of fringing fields as well as of transmission coeffi-

cients due to higher order mode propagation. At the examp-

le of a double-plane step from P- (Ku- ) band to X-band

waveguide as well as of resonant irises the high amount of

higher order mode propagation can be demonstrated.

An optimum double-plane three-step transformer for a

P- to X-band waveguide is designed which shows equal-rip-

ple behavior in passband and requires about half the
transformer length as, e.g., a linear double taper calculated

for comparison.

Reactance-coupled pseudo-high-pass filters can be im-

proved by additional double-plane steps. But the hitherto

k~own design data a~e not optimum. If higher order mode

excitation is considered in the design process, as is demon-

775

strated, a nearly equal-ripple behavior is obtained.

The eigenmode expansion method described converges

relatively quickly. But to avoid adding unnecessary com-

puting time and storage requirements, in the general eigen-

mode expression, the preelection of excited modes, due to

symmetry conditicms and to the wave incident, is advanta-

geous. For the practically important “coaxial” double steps,

as well as for inductive and capacitive irises, the excited

modes are denominated.

Instead of treatment with transmission matrix parame-

ters, a series of steps is treated by a direct combination of

the involved scattering matrices only containing exponen-

tial functions with negative arguments. Beyond numerical

stability, this yields the further advantage tliat fringing

fields of higher order modes below their cutoff frequency

evanesce relatively quickly with distance. This reduces the

number of modes to be considered between step discon-

tinuities for distances being long coinpared with guide

wavelength.
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APPENDIX

Equations ( l)–(5) lead to the following equations:

h=ol=o ‘

(A3)

A=()/=() k=l~=l

= ~ ~ ‘veh,,kl%’~[ + ~ ~ ‘Vetv,klb$!l ‘b$:’/

h=ol =() k= l/=1

(A4)

with the abbreviations

‘hhijk[ =

r

~ ~ (-w-fx)dxdy (As)
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and

–Vheijk, =r- ~,(d))(-%)dxdy (A6)
j~

E

where A, = area of waveguide 1 (see Fig.

The vectors e denote

ef~l = e= x v .yTj\),

T(l)
e~k)i= v XY ek[

(2) = e, x v ,Y Tf~]ehij

e(z),= v ~yT$~).
c?IJ

VT is the transposed matrix of V.
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