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Double-Plane Steps in Rectangular
Waveguides and their Application for
Transformers, Irises, and Filters

HARTMUT PATZELT anp FRITZ ARNDT

Abstract —Double-plane steps in rectangular waveguides are investi-
gated with the method of field expansion into eigenmodes. This method
takes into account the influence of evanescent fields and power transmis-
sion due to higher order modes. The scattering coefficients of a P- (Ku-)
to X-band waveguide transition as well as of resonant irises with finite
thickness are calculated and compared with measured results. An optimum
short double-plane three-section transformer is designed which shows
equal-ripple behavior in passband. The performance of a reactance-coupled
four resonator half-wave filter is improved by additional optimized double-
plane steps.

I. INTRODUCTION

OUBLE-PLANE steps in rectangular waveguides play

a significant role for the design of waveguide trans-
formers {1}-[5], iris coupling structures [1], [2], [6], and
waveguide filters [2]. For transformers, additional steps in
the H-plane can yield shorter section lengths and lower
reflection coefficients [2] in comparison with the mere
E-plane type; rectangular irises of finite width and thick-
ness can be used for tunable direct-coupled resonator
filters [2]; the performance of reactance coupled half-wave
waveguide filters can be improved by additional double-
plane steps [2]. But there still exists a paucity of suitable
theoretical research on such double-plane step circuits,
including excitation of higher order modes which may
influence considerably design data even below their cutoff
frequency.

The investigations on waveguide transformers in [1]
through [5] are based on the assumption that only the TE,,
mode is propagating along the line. Therefore, no direct
design of correct transformer section lengths is possible.
For E-plane waveguide transformers there are empirical
formulas for length correction; for double-plane trans-
formers the designer is left to individual measurements [2].
Rectangular irises are usually calculated by equivalent
circuit methods [2], [6]. Especially for thick irises, however,
this first-order theory leads to wrong results if no empirical
correction 1s included. Reactance-coupled half-wave
(pseudo-high-pass) filters work well up to step discontinu-
ity VSWR’s in the neighborhood of 2 [2]. For other values
there is a noticeable deviation from an equal-ripple re-
sponse, which can be compensated by additional double-
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plane steps. The design values of [2], however, based on the
quarter-wave transformer prototype, are not optimum, since
higher order modes influence the effective resonator lengths
and the step dimensions.

The theory given in this paper, which includes higher
order mode excitation also below cutoff frequency, avoids
these disadvantages and yields correct design data. It is
based on field expansion into orthogonal eigenmodes [7],
by which E-plane steps [8], [10], and infinitely thin induc-
tive or capacitive irises [9] have already been investigated.
In contrast to [8] through [10], however, double-plane step
circuits require all field components to be considered.

Calculation of the scattering coefficients of dominant
mode and next higher order modes for a transition of P-
(Ku- ) to X-band waveguide as well as for resonant irises
with finite thickness demonstrates the influence of higher
order mode propagation. The Fletcher—-Powell optimiza-
tion procedure [11] together with the higher order mode
design theory leads directly to optimum double-plane
stepped waveguide transformers and double-plane step
compensated reactance-coupled half-wave filters. Mea-
sured results verify the theory.

II. THEORY

For the double-plane step (Fig. 1(a)), the field is derived
from the axial z-components of the magnetic and electric
Hertzian vector potentials II, and IT_ {12]

E=— jouv XII,,+ v X v XII,,
H= joev X1II,,+vXvXII,,. (1)

The Hertzian potentials can be written as a sum of the
products of the eigenfunctions T")(x, y) and the propaga-
tion expressions exp(=+v;’)z) due to each mode excited at
the step discontinuity between the two waveguides » =1
and 2 (Fig. 1(a))
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Fig. 1. Double-plane step in rectangular waveguide. (a) Step dimen-
sions. (b) Forward and backward waves at the step. (c) Transformer
section of two steps.

As in [13], the eigenfunctions are so normalized that the where x, < x,, y,< y, and
power carried by a given wave is proportional to the square
Jk\/ (

2
of the wave-amplitude coefficients a and b ) kfc';,’,,,)z (kﬁ”,,)m)
k2

Yh emn

2-cos(k"-(x—c,)) -cos(k;‘)- (y— dz))

T = k = wype, and §, , = Kronecker delta.
rkl Nl.\/1+80,k.\/1+80,1 o
The still unknown coefficients @ and b in (2) correspond
i 2D (v (kD (v —d directly to normalized incident and reflected waves related
T\ = 2 sm(k (x—c )) s1n( ( )> to each other by the scattering matrix which can be de-
N, termined by matching the fields at the step discontinuity at
z =0 (Figs. 1(a) and 1(b))
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This leads to the matrix equation (see Appendix, where
wherem=k and n=1[forv=1; m=iand n= jfor»=2) also the abbreviations V, ,, V, ., V, ., and V, , are ex-

with plained; U= unit matrix)
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N, =yx, \/k(” + k(”2 The scattering matrix of the step discontinuity (Fig. 1(b)) is
then given by
/ Ak <2>2 @?
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* 4 A series of steps (see Fig. 1(c)) is commonly treated by
@ — i-a K@ — Jjm (4) transmission matrix parameters, e.g., [3]. But this is not
X ¥

x—2 ¥ ¥y appropriate, if, like here, higher order modes are included
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which are excited below their cutoff frequency. Since trans-
mission matrix parameters for certain frequencies then may
contain exponential functions with positive argument they
exceed for many geometrical cases the available numerical
range of the computer. The direct combination of the
involved scattering matrices is numerically stable as is
shown for two steps (Fig. 1(c)) as an example, only con-
taining exponential functions with negative arguments

i (IS o N sLD 0 ||ESED E
p*| 1] o sB o Si|| F  FshD
SL 0 a'
o suf)lar] @

where I and II denote the steps I and II, respectively, and

= (U_ S{{Dszlzp)
F=(U-sLDSD) "

where U= unit matrix, and D = diagonal matrix with

D” EN IR -y

—1

due to the transformer sections of length /,, between the
double steps, (see Fig. 1(c)). Besides the numerical stability,
a further advantage of this direct calculation in comparison
with the transmission parameter method is that no symme-
try of ports (i.e., waves) is required. A series of more than
two steps can be treated analogous to (8).

For double-plane steps with excentric waveguide axes,
the H,,(TE,,) wave incident excites all H, (TE, ) and

E,(TM, ) waves with m=(0),1,2,3,-+-, and n=
0),1,2,3,---,(m=0 or or n=0 only for TE,,). If the
axes are concentric, only the waves m=1,3,5,---, and
n=1(0),2,4,6, - -, are excited. Because of limited comput-
ing time and storage requirements, the number of series
terms in (2), i.e., the number of modes considered, has to
be restricted to finite values M and N, respectively. The
maximum values necessary for computing the examples
described are M =9 and N =8, respectively, for double-
plane steps.

IIL.

The first example investigated is the step discontinuity of
a P- (Ku- )band waveguide (12.4-18 GHz, x, =15.8 mm,
¥y =7.9 mm, see Fig. 1(a)) to an X-band waveguide (8.2—
12.4 GHz, x, =22.9 mm, y, =10.2 mm). The magnitude of
the calculated scattering coefficients for the first wavetypes
is shown in Fig. 2. S|, together with the wavetype in round
brackets denotes the corresponding reflection coefficient,
S,, the corresponding transmission coefficient, if an H,
wave is incident in the P-band waveguide. It can be stated
that a high amount of energy is transported by higher
order modes.

In this example, the inclusion of higher order modes up
to M=5 and N=4 has turned out to yield sufficient
convergence behavior (within drawing-accuracy) of the
scattering coefficients. For comparison, |S};| g, has been
measured in the frequency range of 10-18 GHz showing
good agreement with theoretical results.

REsSULTS
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Fig 2. Scattering coefficients as a function of normalized free-space
wavelength and frequency, respectively, of a concentric step discontinu-
ity from a P- ( Ku-) band to an X-band waveguide if a H o (TE;,) wave
is incident. IS”I( Hig) = magnitude of reflection coefficient, H,g-wave,
|S1 Hy ™ magmtude of transmission coefficient, Hjs-wave, etc,

10-cutoft-p — cutoff frequency of the Hj-wave in the P-band wave—
guide, etc., A, = free-space wavelength, ¢ = x; =15.8 mm, y, = 7.9 mm;
X, =22.9 mm, y, =10.2 mm, see Fig. 1(a).
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Fig. 3. Magnitude of the reflection coefficient of double-plane trans-
formers between a P- and an X-band waveguide. ——— linear double
taper approximated by 24 steps. —— optimum double-plane stepped

(design data see Table I).

Double-plane (inhomogeneous) transformers come
about, for instance, when rectangular waveguides having
different heights and widths are cascaded. Also, inhomoge-
neous transformers may serve as taper section when rectan-
gular waveguides are combined with ridged, circular, or
other types of waveguide.

In [5], linearly double tapered waveguide transformers
are suggested. Fig. 3 shows the calculated and measured
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reflection coefficient of such a transformer (dashed line).
As an example of application, such as in Fig. 2, a wave-
guide transition from P-band to X-band is chosen, and the
fength of the transformer section is assumed to be /=150
mm. For calculation, the taper is subdivided into 24 steps
of equal lengths, where each step yields a scattering matrix
according to (7); the series is calculated following (8).

As can be stated, the liner taper is not optimum concern-
ing the length of the coupling section and reflection behav-
ior. Moreover, the high-pass behavior of this continuously
tapered structure cannot be taken advantage of since the
range of suitable waveguide application is limited by the
cutoff frequency of the H,i(TE,;) wave in the broader
(X-band) waveguide. Therefore, an optimum short three-
section double-plane transformer is proposed which shows
nearly Tchebycheff behavior of the reflection coefficient in
passband (Fig. 3, solid line). The design data are calcu-
lated with the Fletcher—Powell method [11] by minimizing
the error function

S Su(E )P
F(x)= X — )
Jj=1 lSZI(x’];)l
with the parameter vector
X = (2, X0 X357+, X5 V1o Yoo Vao®* 55D
ltl’ 112’ lt3" o altn)T
J, = frequency sample points, x, = height, y, = width, /,, =

length of the transformer section i, and with the scattering
parameters according to (7) and (8). The optimum design
data are given in Table 1.

In Fig. 3, for each step discontinuity, as in Fig. 2, the
number of waves M and N, in (2), is chosen to be M =5
and N=4. The waves, however, within the waveguide
sections of length /,, (see Fig. 1(c) and diagonal matrix D in
(8)) are taken into account according to increasing cutoff
frequency. Seven consecutive waves (TE,;, TE,,, TE,,,
T™,,, TE;,, TM,,, and TE,,) have turned out to be
sufficient to yield adequate convergence behavior for the
examples in Fig. 3, since the fringing fields due to modes of
still higher order, evanesce relatively quickly with distance
because of the described technique of directly combining
the scattering matrices according to (8).

Fig. 4 shows the scattering parameters of resonant irises
with finite thickness. Also, here the considerable amount of
energy transported by higher order modes is demonstrated.
By measurement, it is shown that the calculated values
(e.g., the resonant frequency) are in close coincidence with
practice. For these examples, M and N are assumed to be
M =7 and N = 8. Seven consecutive waves have been taken
into account within the iris waveguide section.

In [2], reactance-coupled pseudo-high-pass filters are im-
proved by two additional double-plane steps. Fig. 5 (dashed
line) shows the transmission coefficient in decibels calcu-
lated with (7) and (8) for dimensions according to [2] (see
Table I). It can be stated that in contrast to the theoretical
predicted performance in [2] no optimum response is ob-
tained. An optimization however, according to (9) leads to
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Fig. 5. Transmission coefficient a = —20log|S,,| in decibels of a reac-
tance-coupled four resonator half-wave pseudo-high-pass filter with

double-step compensation. — —— design data according to [2] (see Table
I). — optimized design data (see Table I).
TABLEI
DIMENSIONS OF DESIGNED TRANSFORMERS AND FILTERS
Optimum double-plane three-section tranaformer (Fig. 3)
weveguide 1 section 1 section 2 section 3 wavegqulde 2
a/mm° 15.8 17.57 19.33 21.09 22.86
b/mm 7.9 8.47 5.03 9.60 10.16
Tt /om 9.72 8.83 a.29
(P-(KusXhand) {X-band)
Reactance coupled half-weave filter (Fig. 5)
not waveguide 1 and 2 |iris 1,5|res.1,4]iris 2,6|res.2,3{irts 3
optimlzed s 1)
according IJ/mm 34,85 24 48B4 34.85 119.142 34.85 |17.493
ta /mm 15.8 23.7 23.7 23.7 23.7 23.7
[23 Lo /mm 1] 47.057| © 19.265| O
optimized B/mm 34 .85 29.190 34.85 [19.142 34.85 117.493
/mm 15.8 24,5 24,5 24 .5 24,5 24,0
©/mm 0 23.444 0 19.265

1) 8 = width, b = helght, 1'; = lenght of transformer section, lr = length of reeonator

optimum design data (see Table I) which provide nearly
equal-ripple behavior (Fig. 5, solid line). For these exam-
ples, M and N are chosen to be M =9 and N =8 for each
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Fig. 6. Magnitude of the reflection coefficient of an unsymmetrical
resonant iris if an H,o, wave is incident. Waveguide dimensions: x; =15.8
mm, y, = 7.9 mm. Iris dimensions: x, =11.85 mm, y; = 6 mm, thickness
=3 mm.

step. But since the resonator lengths between them are
relatively long, only three consecutive waves have turned
out to be sufficient within these sections for the frequency.
range considered.

To demonstrate the application of the method described
for a double step with excentric axes, an unsymmetric,
resonant iris with finite thicknéss is chosen. Fig. 6 shows
the calculated and measured magnitude of the scattering
coefficienit S|, for an incident TE,, wave. M and N are
each chosen to be equal to 4 (note that. all modes are
excited). Five consecutive waves are considered within the
iris waveguide section.

Further examples for a treatment with this method are
inductive and capacitive irises with finite thickness. If only
a TE,, wave is incident (note that this is not the case for
the pseudo-high- pass filter irises in Fig. 5), for an inductive
iris only TE, ,, for a capacitive iris only TE,, and TM,,
waves are ¢xcited. Sufficient convergence behavior and
coincidence with measurements is obtained for M =25
(inductive iris) and N =12 (capacitive iris) as well as five
consecutive waves within the iris (iris dimensions up to
one-half of the corresponding waveguide dimensions pro-
vided, and thickness not less than about one-tenith of the
iris dimension).

IV CONCLUSIONS

A de&gn theory for double-plane steps in rectangular
waveguides is suggested which takes into account higher
order mode excitation also below cutoff frequency. This
allows one to- include in ‘the design procedure the in-
fluences of fringing fields as well as of transmission coeffi-
cients due to higher order mode propagation. At the exari-
ple of a double-plane step from P- (Ku- ) band to X-band
waveguide as well as of resonant irises the high amount of
higher order mode propagation can be demonstrated.

An optimum double-plane three-step transformer for a
P- to X-band waveguide is designed which shows equal-rip- .
ple behavior in passband and requires about. half the
transformer length as, e.g., a hncar double taper calculated
for comparison.

Reactance-coupled pseudo-high-pass filters can be im-
proved by additional double-plane steps. But the hitherto
known design data are not optimum. If higher order mode
excitation is considered in the design process, as is demon-
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strated, a nearly equal-ripple behavior is obtained.

__The eigenmode expansion method described converges
relatlvely quickly. But to avoid addmg unnecessary. com-
puting time and storage requirements, in the general eigen-
mode expression, the preselection of excited modes, due to
symmetry conditions and to the wave incident, is advanta-
geous. For the pracucally important “coaxial” double steps,
as well as for inductive and capacmve irises, the excited
modes are denominated.

Instead of treatment with trafisrission matrix patame-
ters, a series of steps is treated by-a direct combination of
the involved scattering matrices only containing exponen--
tial functions with negative arguments. Beyond numerical
stability, this yields the further advantage that fringing
fields of higher order modes below their cutoff frequency
evanesce relatively quickly with distance. This reduces the
number of modes to be considered between step discon-
tinuities for distancés being long compared with guide
wavelength.
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'APPENDIX
Equations (1)—(5) lead to the following equations:

%JF 2 2 hhuklahk1+ 2 2 Vhezjk/aekl :

k=01=0 k=11=1 .
(hlz)j + E 2 hhz]k/ hk/+ 2 E vhel/k/bekl
k=01=0 k=11=1
(A
5211)/ + Z 2 eezjklaekl
k=11=1
—ng)/ + Z 2 eezjklbezk)l
k=11=1 .
(A2)
00 00
> 2 V/1hijk/a§11/<)/_a§12f)j
k=0/=0
© 00 :
= 2 2 hvhhijk/b(h]/)d%_b(hzj)j
k=01=90
| (A3)
o 00 0 0
2 2 hl/k/ahk[+ 2 2 eet;kla(e]k)l_ag)j
k=0/=0 k=11=1
0 oo [T
2 2 hl/k[b<hll)(l+ 2 E eet/k[ (elk>/+b(ezl)/
k=01=0 k=11=1
(A4)
with the abbreviations

)(—ed)dxdy  (AS)
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and
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YivSe 1
. I3 e 2
Vi = | =55 [, (@) (=€) dxdy (a6)
Y
iy @ A
Vehtjkl 'Y}S}c)l‘yétzj) / 4, eezj) dx dy ( 7)
Veeijkl ( tg}c)l)(eg;) d‘x dy (A8)
where A, = area of wavegulde 1 (see Fig. 1(a)).
The vectors e denote
el =e, XV, Thkl (A9)
el =V, T (A10)
e =e, XV, L, (A1)
@ — @
e613 v xyTei}‘ (A12)

VT is the transposed matrix of V.

g
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